Lesson 6. Cylinders and Quadric Surfaces

1 In this lesson...

- Special families of surfaces in 3D space
- Drawing different types of surfaces in 3D space

2 Cylinders

- A cylinder is a surface composed of all lines that
 - are parallel to a given line and
 - pass through a given plane curve
- In 3D, if one of the variables *x*, *y*, *z* is missing from the equation of a surface, then the surface is a cylinder

Example 1. Sketch the graph of the surface $z = x^2$.

Example 2. Sketch the graph of the surface $y^2 + z^2 = 1$.

Example 3. Sketch the graph of the surface xy = 1.

3 Traces

- A trace of a surface is the curve of intersection of the surface with planes parallel to the coordinate planes
- Idea:
 - Start with an equation in 3 variables x, y, z
 - Plug in a value for one of the variables
 - Graph the resulting equation in 2 variables (i.e., graph a trace of the surface)
 - Repeat for other values and other variables
 - "Glue" the traces together

Example 4. Use traces to sketch the surface $z = 4x^2 + y^2$.

4 Quadric surfaces

• Ellipsoid

• Elliptic paraboloid

• Hyperbolic paraboloid

• Equation:

- All traces are ellipses
- If a = b = c, the ellipsoid is a sphere

• Equation:

- Horizontal traces are ellipses
- Vertical traces are parabolas
- The variable raised to the first power indicates the axis of the paraboloid

• Cone

• Equation:

- Horizontal traces are hyperbolas
- Vertical traces are parabolas
- The case when c < 0 is illustrated

• Equation:

- Horizontal traces are ellipses
- Vertical traces are planes or hyperbolas

• Hyperboloid of one sheet

• Equation:

- Horizontal traces are ellipses
- Vertical traces are hyperbolas

• Hyperboloid of two sheets

- Equation:
- Horizontal traces (when z = k) are ellipses if k > c or k < -c
- Vertical traces are hyperbolas
- Equations given above are in "standard form"
 - $\circ~$ May need to do some algebra to get an equation into standard form
- Equations given above are for surfaces that are symmetric about the *z*-axis
 - $\circ~$ May need to switch the variables around to match an equation with the surface type

Example 6. Sketch the quadric surface $z = y^2 - x^2$. What is this quadric surface called? *Hint*. Draw traces for this surface when x = 0, y = 0, y = 1, and y = -1.

Example 7. Sketch the quadric surface $x^2 + y^2 - z^2 = 1$. What is this quadric surface called? *Hint*. Draw traces for this surface when z = 0, z = 1, z = -1, and x = 0.

Example 8. Identify and sketch the quadric surface $2z^2 - 4x^2 - y^2 - 4 = 0$ by matching the equation to the standard equations given above.

Example 9. Identify and sketch the quadric surface $2y^2 = x^2 + 4z^2$ by matching the equation to the standard equations given above.

